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Abstract

The Linux kernel is quickly evolving and extensively cus-
tomized. This results in thousands of versions and derivatives.
Unfortunately, the Linux kernel is quite vulnerable. Each
year, thousands of bugs are reported, and hundreds of them
are security-related bugs. Given the limited resources, the
kernel maintainers have to prioritize patching the more severe
vulnerabilities. In practice, Common Vulnerability Scoring
System (CVSS) [1] has become the standard for characteriz-
ing vulnerability severity. However, a fundamental problem
exists when CVSS meets Linux—it is used in a “one for all”
manner. The severity of a Linux vulnerability is assessed
for only the mainstream Linux, and all affected versions and
derivatives will simply honor and reuse the CVSS score. Such
an undistinguished CVSS usage results in underestimation or
overestimation of severity, which further results in delayed
and ignored patching or wastes of the precious resources. In
this paper, we propose OS-aware vulnerability prioritization
(namely DIFFCVSS), which employs differential severity
analysis for vulnerabilities. Specifically, given a severity-
assessed vulnerability, as well as the mainstream version and
a target version of Linux, DIFFCVSS employs multiple new
techniques based on static program analysis and natural lan-
guage processing to differentially identify whether the vul-
nerability manifests a higher or lower severity in the target
version. A unique strength of this approach is that it trans-
forms the challenging and laborious CVSS calculation into
automatable differential analysis. We implement DIFFCVSS
and apply it to the mainstream Linux and downstream An-
droid systems. The evaluation and user-study results show
that DIFFCVSS is able to precisely perform the differential
severity analysis, and offers a precise and effective way to
identify vulnerabilities that deserve a severity reevaluation.

1 Introduction

Linux has become the most widely used and complex open-
source project. The Linux kernel not only evolves quickly,
but is also commonly cloned and customized, which results
in a large number of versions and derivatives. Specifically, it
has more than three thousands of different versions, including
stable versions, release candidate versions, and long time
support versions. Many of them are commonly used by the
systems such as Android, Ubuntu, Red Hat, and IoT systems
are also derived from the Linux kernel. For example, there
are at least 29 [71] major Android systems running on over
24,000 models [29] and billions of mobile devices.
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The Linux kernel alone is reported to have thousands of
bugs each year, and hundreds of them are security related bugs
(vulnerabilities). When a vulnerability is severe, it is supposed
to be patched promptly to avoid being exploited [4]. This is
crucial given its extremely high importance and popularity.
To assist with the severity assessment, maintainers widely use
Common Vulnerability Scoring System (CVSS) [35], an open
framework for characterizing the severity of vulnerabilities.
CVSS is a metric-based system; combining all CVSS metrics
with different weights allows people to calculate [1] a score
ranging from O to 10 (the most severe). In practice, CVSS
has been widely adopted as a standard measurement system
by industries, organizations, and governments; the National
Vulnerability Database (NVD) provides CVSS scores for
almost all known Linux vulnerabilities.

The “one for all” CVSS usage. A fundamental problem
arises when CVSS meets Linux—it is used in an “one for
all” manner. When a bug reporter requests a Common Vul-
nerabilities and Exposures (CVE) [47] for a vulnerability, the
CVE maintainers assign a (single) CVSS score for it, typically
based on the mainstream Linux. All affected versions and
some derivatives will then simply honor the assigned CVSS
score for prioritizing their patches. This is understandable
because assigning the CVSS score is quite laborious and re-
quires expertise. Maintainers of small derivatives may not
afford the reevaluation for all of their system.

A “one for all” CVSS usage results in two critical problems
in vulnerability prioritization. First, patches for a severe vul-
nerability may be delayed or even ignored when its severity
is underestimated. While a CVSS score is assigned for the
project where the vulnerability was originally found, the vul-
nerability may manifest a much higher severity in a different
version or derivative. Second, overestimating the severity in
a different version or a derivative may waste maintenance
resources when they are improperly allocated to non-critical
vulnerabilities, which delays the patching for more critical
vulnerabilities.

The severity of vulnerabilities varies significantly across
different operating systems (OSes) [23]. In recent years, some
security-sensitive vendors (e.g., Red Hat [53], Ubuntu [63]
and BlackBerry [41]) have begun publishing their own sever-
ity levels for vulnerabilities that affected their products. For
example, Red Hat re-evaluated CVSS scores of 2,199 Linux-
related CVEs, among which 981 CVEs have different CVSS
scores from the original ones, with 247 having higher scores
in Red Hat. Unfortunately, such OS-aware severity analysis is
commonly done manually by analyzers [6] and only by major
vendors. Such an approach certainly would not scale and be



affordable for small vendors. As a result, reusing the CVSS
scores assigned by NVD is still the dominating strategy in
practice. Hence, it is essential to automatically analyze the
severity of vulnerabilities in an OS-aware manner, to support
thousands of affected derivatives and versions.

OS-aware vulnerability prioritization: challenges. Given
a vulnerability, automatically calculating its CVSS score for
different OSes is challenging. First, determining the ex-
ploitability of a vulnerability is still an open problem [69],
which requires understanding code semantics, reachability,
environments, etc. Second, CVSS involves many metrics
from multiple dimensions. Automatically assessing them to
determine the scores is hard. To our knowledge, none of the
existing works can provide OS-aware and automated sever-
ity analysis for thousands of derivatives and versions of a
program like the Linux kernel.

Our approach. In this paper, we propose OS-aware vulnera-
bility prioritization (namely DIFFCV SS) for Linux-based sys-
tems, which employs differential severity analysis for Linux
derivatives and versions. Specifically, given a Linux CVE
(i.e., a vulnerability assigned with a CVSS score for the main-
stream Linux), DIFFCVSS employs both static program anal-
ysis and natural language processing (NLP) to precisely iden-
tify and map Linux functions to CVSS metrics, and match
code paths related to the CVE in both the mainstream version
and the target version. It then performs OS-aware analysis
for the metrics-related functions in the code paths. By differ-
entially comparing the metric-related functions, DIFFCVSS
automatically determines if the vulnerability is less or more
severe in the target version. DIFFCVSS pinpoints such cases
for maintainers to further reevaluate the severity for the spe-
cific target version. A unique strength of this approach is
that it transforms the challenging CVSS calculation into au-
tomatable differential analysis. More specifically, to realize
DIFFCVSS, we propose multiple new techniques.

First, we identify CVSS-related functions and map the
CVSS metrics to them. The technique trains a set of clas-
sifiers using the Bi-directional Long Short-Term Memory
Networks (BiLSTM) [15] +attention model. We choose this
model because it can capture the semantic context of a full
sentence, also pay more attention to those informative words
that have significant impact to classification results. It further
leverages transfer learning to transform semantic knowledge
to a specific domain. Second, we identify and map call-chains
(vulnerability paths) for a CVE. This technique employs both
static program analysis and NLP techniques to precisely lo-
cate and match the call-chains in Linux and its derivatives.
Third, we perform metric-level differential analysis against
functions in the call-chains and determine if the vulnerability
deserves a severity reevaluation in the target OS version.

We have implemented DIFFCVSS and applied it to the
mainstream Linux and downstream Android systems. We
choose them because they represent the most popular Linux-
based ecosystem. We found that DIFFCVSS is able to pre-

cisely map CVSS-related functions and identify the call-
chains leading to the vulnerability. More importantly, with
DIFFCVSS, we found 110 vulnerabilities that have different
severity levels between Android and Linux, and 30 vulner-
abilities that have different severity levels across different
versions of the Linux kernel itself. In 18 cases, the severity
is much higher in the derivative Android system. Failure to
re-assess them would delay the patching of severe vulnera-
bilities, which incurs significant threats. These results show
that DIFFCVSS offers a precise and effective way to iden-
tify vulnerabilities that manifest different severity levels in a
specific OS and thus deserve a severity reevaluation. In addi-
tion, we conduct a user study on DIFFCVSS, and the results
demonstrate the effectiveness and usability of DIFFCVSS for
its users (e.g., maintainers).

In summary, this paper makes the following contributions:
e Mapping functions to CVSS metrics. We train a set of
classifiers to map functions to the CVSS exploitability met-
rics based on their descriptions in Linux kernel and further
leverage transfer learning to transform the semantic knowl-
edge learned from Linux to the Android domain.
e Identifying and matching vulnerability paths for CVEs.
Based on CVE information, DIFFCVSS employs static pro-
gram analysis and NLP to precisely identify the correspond-
ing vulnerability paths (from an entry point to the vulnerable
function) and match them between Linux and Android. We
believe that identifying vulnerability paths is a useful tech-
nique that can enable further research such as patch generation
and testing, and impact analysis.
e OS-aware vulnerability prioritization. With the mapping
from functions to CVSS metrics and the identified vulnerabil-
ity paths, DIFFCVSS employs differential severity analysis,
which can automatically determine the severity differences
for the vulnerability in different OSes.
e A severity reevaluation of Linux vulnerabilities. With
the new techniques, DIFFCVSS achieves an impressive pre-
cision in the differential severity analysis. With DIFFCVSS,
we also found 110 vulnerabilities that have different sever-
ity across Android and Linux. More critically, 18 of them
have a higher severity and should be reevaluated per OS to
avoid delayed patching. Also, the usability study shows that
DIFFCVSS can guide maintainers to assess vulnerability cor-
rectly and effectively in an OS-aware manner.

2 Background
2.1 Cross-OS Vulnerabilities

A vulnerability becomes a cross-OS vulnerability when it
exists in many OSes (e.g., Linux, Android, and Red Hat)
and causes a different severity in them. Such vulnerabilities
should be evaluated separately per OS.

Prevalence of cross-OS vulnerabilities. The Linux kernel
has been shipped to a wide variety of computing systems, such
as IoT devices, mobile devices (mainly Android), personal
computers, and industrial control systems (ICS). One of the



System Type Number of vendors | Vendor CVE Vendor Severity | NVD Severity
Mobile devices 5 BlackBerry, Huawei, LG,etc. CVE-2020-11652 | 6.5 MEDIUM 8.6 HIGH
TIoT/ICS devices 7 NetApp, Siemens, SAP, etc. CVE-2018-2477 8.8 HIGH 6.5 MEDIUM
Network devices 8 Cisco, PulseSecure, SonicWall etc. CVE-2020-1993 5.4 MEDIUM 3.7 LOW
Personal computer 6 Ubuntu, Red Hat, SUSE etc. CVE-2017-5897 3.7 LOW 9.8 CRITICAL

Table 1: Examples of re-evaluated CVEs by difterent vendors.

most well-known Linux derivatives is the Android common
kernels [27], also known as ACKs, which are downstreams
of the Linux kernel. Furthermore, plenty of mobile OSes
are based on ACKs or Linux kernel, such as BlackBerry Se-
cure [41], ColorOS [51], EMUI [34], MIUI [48], and Chrome
OS [28]. Therefore, most vulnerabilities in Linux and An-
droid are cross-OS vulnerabilities. Our study on 2,911 CVEs
in the Linux kernel and 6,080 CVEs in Android found that 26
vendors and 10 third parties have reevaluated the severity of
these vulnerabilities on their own or other platforms. Table 1
shows several example vulnerabilities that were reevaluated
by different vendors. Although some major vendors have
their own criteria for reevaluating the severity [7, 53, 63].
The criteria are rough and hard to automate for analyzing
different vulnerabilities. These results indicate that cross-OS
vulnerabilities are pervasive and have raised awareness in
major vendors (but not in small vendors yet).

2.1.1 Impacts of Cross-OS Vulnerabilities

Linux Severity (CVSS 3.0) | Medium of DD | Average of DD
LOW 349 349
MEDIUM 99 138.5
HIGH 34.5 57
CRITICAL 8 8
Average 122.6 138.5

Table 2: Delayed patch days of the Linux vulnerability on Android-
MSM project [2]. DD = delay days.

The severity of a vulnerability would significantly influence
the patch prioritization of the vulnerability. However, in prac-
tice, the “one for all” strategy is widely adopted, regardless of
the underlying OSes, which would inevitably result in overes-
timation or underestimation of the severity. We next present
how overestimation and underestimation result in security
concerns.

Underestimation causes delayed or even missed patches,
leaving the program vulnerable. Given the limited mainte-
nance resources, software vendors have to de-prioritize the
patching of vulnerabilities with lower severity level. Android
Security [4] mentions that “The first task in handling a se-
curity vulnerability is to identify the severity of the bug and
which component of Android is affected. The severity deter-
mines how the issue is prioritized.” When comparing the patch
time of vulnerabilities in the Linux kernel and the Android-
MSM project [2] (see Table 2), we found that the delays (in
days) are inversely proportional to the severity reported by
the NVD. Therefore, underestimation of vulnerability can
lead to a delay of months and even years. In practice, we have

actually observed many cases where underestimation leads to
delayed and missed patches, such as CVE-2016-5696 [13]. It
is worth noting that when a vulnerability is assigned with a
CVE, it has been publicized, which means adversaries know
them. In this case, delaying or ignoring the patches is particu-
larly critical.

Overestimation wastes limited maintenance resources
(which in turns also delays the patching for more critical
ones) and is quite common. According to the data released
by NVD [36], from 2017 to 2020, the number of vulnerabili-
ties disclosed each year has almost doubled from that before
2016. On average, each enterprise will find 870 CVEs from
960 IT assets every day [64], and they usually follow the
severity scores published on NVD. Specifically, 33.4% of
vulnerabilities re-evaluated by Redhat have a lower CVSS
score than that from NVD. Hence, handling a large amount of
vulnerabilities a day poses a big challenge for organizations,
especially on those overestimated, which will lead a serious
resource drain. Such inappropriate and non-optimal resource
allocation could in turn result critical vulnerabilities in being
delayed.

Overall, the “one for all” CVSS usage can cause many
issues, and more and more vendors have started to re-
evaluate the vulnerabilities. CVSS scores are widely used
to prioritize the fixes of vulnerabilities. The timeliness of
the patching of a vulnerability is often proportional to its
CVSS score [76]. CVSS scoring has been complained of
being too generic by lots of organizations [72], without con-
sidering different execution contexts [24], which are com-
mon due to customization. As a result, more and more ven-
dors started performing the re-evaluation of vulnerabilities
for proper prioritization and risk management. We found
that their re-evaluation results are alarming—severity differ-
ences are quite prevalent in cross-OS vulnerabilities; nearly
44.6% of vulnerability scores re-evaluated by Red Hat are
different from that of NVD. It is also worth noting that exist-
ing re-evaluation is largely manual [6], which cannot scale
and would still slow down the patching by months or even
years [76]. Furthermore, in our user study (see §7), almost all
participants agreed that the “one for all” CVSS usage is prob-
lematic, and re-evaluating severity is necessary but laborious,
time-consuming, and expertise-required.

2.2 CVSS Metrics

The CVSS is an open and widely-adopted vulnerability sever-
ity scoring standard. It assigns severity scores to vulnera-
bilities, which allows responders to prioritize resources for
responses. A vulnerability is typically assigned a CVSS score
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Figure 1: An overview of DIFFCVSS.

rating from zero to ten that maps to severity levels from low
to high (i.e., 0.1-3.9 as low, 4.0-6.9 as medium, 7.0-8.9 as
high, and 9.0-10 as critical). To generate a CVSS score, an
assessor will follow the CVSS specification document [35] to
assign values to a set of metrics. A CVSS score is then calcu-
lated according to a CVSS vector aggregating CVSS metric
values. The formulas can be found in [35]. The CVSS score
influences the enthusiasm of applying patches from relevant
product suppliers.

There are two types of metrics, exploitability metrics and
impact metrics. The exploitability metrics reflect the proper-
ties of the vulnerability that lead to a successful attack, and
their values indicate the exploitation difficulty [35], which
include the following four parts: (1) attack vector (AV), reflect-
ing the context in which vulnerability exploitation is possible.
It consists of four values: N (network), A (adjacent network),
L (local) and P (physical). (2) attack complexity (AC), indi-
cating the additional conditions for a successful exploit; if
a successful exploitation requires some measurable amount
of efforts the AC should be H (high); otherwise, it should be
L (low). (3) privileges required (PR), describing the privi-
leges required for an exploit, ranging from H (high privilege
requirement such as “root”) to N (none privilege is required,
thus easier exploitation). (4) user interaction (UIL), showing
the requirements for the user to participate in the exploitation,
ranging from R (required, thus a harder attack) to N (none,
thus an easier attack).

This project aims at analyzing exploitability metrics, in-
stead of impact metrics (e.g., confidentiality, integrity, avail-
ability). This is because impact metrics are typically decided
by the type of the vulnerabilities, and the associated impact
score would not change across OSes. That said, based on the
needs of vendors, the techniques proposed in this work can
also be naturally extended to include impact metrics.

3 Overview

DIFFCVSS’s goal is to enable OS-aware vulnerability prior-
itization. DIFFCVSS employs differential analysis to auto-
matically identify whether a vulnerability would manifest a
different severity in a different OS. In this work, we focus on
the most commonly used systems, the Linux kernel, and the

derivative Android kernel. Their security can influence bil-
lions of devices. Figure 1 shows the overview of DIFFCVSS,
which consists of four parts: (D metric2function mapping, @
vulnerability artifact recognition, Q) vulnerability call-chain
identification, and @ differential severity analysis. More
specifically, using Linux/Android kernel function descrip-
tions in the documentation, DIFFCVSS constructs a map
between functions and exploitability metrics (i.e., AV, AC, PR,
UT) to support vulnerability severity quantification. For exam-
ple, the Linux kernel function ns_capable with description
“determine if the current task has a superior capability in ef-
fect” should be mapped with PR:H, indicating a high privilege
requirement (D). Meanwhile, given a vulnerability in the
Linux kernel, as documented by CVE, our approach extracts
useful semantic information about the vulnerability (e.g., af-
fected version, vulnerable function, system call, etc.) from the
CVE description and the corresponding Linux git log, which
enables vulnerability call-chain identification (). Then,
DIFFCVSS compiles the Linux kernel (with affected version)
and determines vulnerability call-chains using artifacts (e.g.,
vulnerability-related functions and tokens) extracted in pre-
vious step. Such information is further used to identify and
match the corresponding vulnerability call-chains in the af-
fected Android kernel (3)). Given both Linux and Android
vulnerability call-chains, DIFFCVSS conducts a differential
analysis to identify the vulnerability path differences (func-
tions), and further determine how such difference will affect
vulnerability severity level, by examining the function in the
call-chains and their associated CVSS metrics (@).

4 Design
In this section, we will detail the design of DIFFCVSS.

4.1 Mapping Metrics to Functions

As the first component, DIFFCVSS maps exploitability met-
rics to functions: (1) identifying functions that are related to
the CVSS metrics and (2) mapping the CVSS metrics value to
the functions. We decide to perform the function-based map-
ping for two reasons. First, we found that, in most cases, the
severity assessment determines metric values at a granularity
of functions. Second, function description in source code pro-
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vides a direct and easy way for developers to understand the
functionality, parameters, or the usages of a function. Hence,
we can use NLP techniques to automatically analyze those
descriptions to identify functions that are related to the CVSS
metrics and to construct the mapping.

For example, the Linux function tcp_rcv_established
has the description of “T'CP receive function for the ESTAB-
LISHED state”. This description indicates the function is
bound to the network stack (i.e., AV:N). We can thus con-
struct a mapping between tcp_rcv_established and AV:N.
We elaborate on our design as follows.

Function-description extraction. To extract function de-
scriptions, we first use Sphinx [38] to automatically identify
well-structured descriptions in the kernel-doc format from
kernel source files. However, less-structured descriptions are
common (around 67.6%) that cannot be directly extracted by
Sphinx. To address this, we use regular expression to extract
them. Specifically, we first use Coccinelle [52], a tool for pat-
tern matching and text transformation, to extract the function
name and its line number from source code. Then, we design
regex expressions to capture single-line and multi-line block
descriptions above the function. As a quick evaluation, we
manually sample 200 functions with less-structured descrip-
tions for testing. The results show our regex-based method is
very effective—achieving a recall of 100% and a precision of
99.5%. As aresult, we gather 48,232 function descriptions by
using Sphinx and 100,778 more using the regular expressions,
which can cover all of core kernel functions [37].

Inferring CVSS metrics for functions. After gathering
function descriptions, DIFFCVSS then infers CVSS metrics
for each function based on their descriptions. In our study, we
use BiLSTM [15] and attention mechanism [66] for function-
description reasoning and exploitability-metric classification.
We choose such a model for two reasons. First, some de-
scriptions are relatively long (more than 100 words), hence
we use the BILSTM model which is able to memorize longer
sequences of the input data. Second, after manually reviewing
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Figure 3: BILSTM+Attention model

hundreds of ground-truth data, we found some informative
keywords that have decisive impact on the functionality of
functions, which can be captured by the attention mechanism.
For example, if a function description has the words such as
“permission”, “privilege”, “admin”, “capability”, it has a high
chance to be associated with PR: H. Note that those informative
words are learned by the self-attention mechanism instead of
manually observation. In particular, our BILSTM consists of
two LSTM units, which operate in both directions to capture
long-term dependencies between word sequences. Also, the
attention mechanism can automatically focus on the words
that have a decisive effect on the classification to capture the
most critical sentimental information in a sentence.

More specifically, we first represent sentences in the de-
scriptions into vectors. We concatenate each word’s vec-
tor generated by words embedding [62]. Based on this,
DIFFCVSS further uses BiLSTM [15] and the attention mech-
anism [66] to discover metric-related functions. As shown in
Figure 3, our model consists of four components: (1) Input
layer which is the sentence vector emb; = {ey,ez,...er }, con-
catenated by the each token’s vectors e; that is output by the
pre-trained Word2vec’s skip-gram model. (2) LSTM layer
which contains two sub-networks to learn left and right se-
quence contexts respectively. The outputs are the word anno-



tations h; = {E; @ ﬁ,} where @ is the concatenate operation.
(3) Attention layer: considering that not all context words
have the equal contribution to the semantics of a sentence, we
use a self-attention layer to automatically capture important
parts of the sentence itself. The output of attention layers is
s =Y, 0:h;, where 0 is an attention weight, s is the output
sentence vector, and ¢ is the word sequence. (4) Output layer:
further, s is the input to the softmax layer for exploitability-
metric classification, i.e., y = softmax (Wys + bs), where W
is the weighted matrix, and by is the bias.

Note that each function can be associated with more than
one exploitability metrics. For example, file_ns_capable
can be mapped to two metrics PR:H and UI:R, because it is
a file operation that needs user interaction while it is also a
permission check that determines if the operator of that file
has a permission. Hence, in our study, we train a classifier for
each exploitability metric (see §5).

Transforming model to Android domain. In order to avoid
excessive human work in labeling functions in Android ker-
nels, we transform the semantic knowledge learned from
Linux kernel to Android. Our key insights are two-fold. First,
an Android kernel is built on top of the Linux kernel, and they
share around 84% of functionalities [40]. Second, although
the Android kernel introduces various Android-specific fa-
cilities, such as ashmem (Android shared memory driver),
Binder IPC mechanism, and wake lock mechanisms [57],
the informative words that have significant impacts on the
classification results should share the same or similar mean-
ing. For example, the function sdcardfs_permission is
an Android-specific function, used to perform permission
check on the sdcardfs inode. Its description is “calling
process should have AID_SDCARD_RW permission”. Although
AID_SDCARD_RW is an Android-specific term, the informative
keyword “permission” here is inline with the Linux kernel.

In order to keep such similarity and mitigate the subtle
platform differences, we fine-tune the model transferred from
the Linux kernel using a small number of data which are
specific to the Android domain. Particularly, we freeze atten-
tion layers to preserve learned informative keywords and at
same time adjust hidden-layers using such fine-tuning data
to make the transferred model optimized for the Android ker-
nel. More specifically, DIFFCVSS copies the parameters in
the attention layers from the Linux kernel model to the An-
droid kernel domain. Then, DIFFCVSS fine-tunes the trans-
ferred model based on the data selected in §6.1. DIFFCVSS
will enumerate all the different combinations of the hyper-
parameters and choose the one with the best performance.
Those hyper-parameters include different optimizers, dropout
for regularization, learning rate, and epoch.

Discussion. To evaluate the reliability of function descrip-
tions on assessing the severity of vulnerabilities, we manually
investigate a ground truth dataset (see §6.1) and find that the
function descriptions can effectively indicate the severity of

vulnerabilities. Specifically, we manually look into all the
vulnerability call-chains recorded in the fuzzing log and find
489 functions with descriptions that directly reflect the ex-
ploitability metrics values. For example, the description of
function tomoyo_check_unix_acl is “Check permission for
Unix domain socket operation”, which provides highly rele-
vant information about exploitability metrics PR. Also, for all
the ground-truth vulnerabilities, on average, 85.1% of their ex-
ploitability metrics can be directly reflected in the descriptions
of functions on the vulnerability call-chain. The result shows
that most vulnerability call-chains contain enough functions
that have severity-related descriptions.

4.2 Vulnerability Artifact Recognition

As mentioned earlier, semantic information (including af-
fected version, vulnerable functions, and system calls) of
vulnerability paths comes from the text content of CVE and
Linux git log. In our study, to rebuild the vulnerability path
given a vulnerability, we will retrieve (1) compilation-related
information (i.e., affected version, configuration options),
which provides settings for us to compile kernel into LLVM
IR. (2) vulnerability entry points and endpoints (i.e., sys-
tem call, vulnerable function), which enable us to gener-
ate possible vulnerability call-chain in the call graph. (3)
vulnerability-related functions and tokens (e.g., module name,
macro name), which helps us determine functions (except for
vulnerable function) in the vulnerability path.

Retrieving affected version, vulnerable function, and sys-
tem call. We adopt the method used in Semfuzz [74], which
uses both regex expression and constituency tree that repre-
sent the syntactic structure of a sentence [14], to recognize
affected version, vulnerable function, and system call in the
CVE and Linux git log.

Identifying affected configuration. The configuration in-
formation indicates whether driver is built into the ker-
nel (e.g., CONFIG_XFRM_MIGRSTE=y) or is not selected (e.g.,
CONFIG_XFRM_MIGRSTE=n). Those options are specified in the
config file of the kernel, e.g., .config in the Linux. To re-
trieve those information, we use regex “\bCONFIG_\w+" to
identify the configuration name and operation. After that, we
use its semantic context to determine its option (“y” or “n”).
Specifically, we construct a dependency tree using spaCy [33]
to identify the verb of configuration name. If the verb is either
“enable”, “use”, “enforce” or “build” and there is no negation
modifier before the verb, we will regard the configuration
option is “y”. However, if the verb contains negative meaning
(e.g., “disable”) or there is an negation modifier dominating
the verb (e.g., “is not enabled”), we will view configuration
option is “n”. In our study, we use spaCy [33] to identify
negation modifiers.

Recognizing and inferring vulnerability-related func-
tions. Here we defined vulnerability-related functions as the
functions in the vulnerability path. Such inferred functions
will facilitate the identification of vulnerability call-chains



(see §4.3). To this end, we generate a list of Linux func-
tion names using Coccinelle [52] and match those functions
names in the text. However, not all vulnerability-related func-
tions are recorded in the CVE or git log, but only some key-
words (e.g., ioctl, which can be correlated to the functions
do_vfs_ioctl, vfs_ioctl). Hence, in our study, we retrieve
those keywords (i.e., vulnerability-related tokens) and further
infer functions associated with those keywords. More specif-
ically, after manually examining 100 CVE and git logs, we
determine three kinds of vulnerability-related tokens: mod-
ule name, variable name/type, macro name. After that, we
generate the list of all module names, variables, macro names
in the Linux kernel by building parsers on top of Coccinelle
[52]. In this way, we achieve three lists with 2,538 module
names, 81,327 variable name/type, 1,903,662 macro names.

Given those lists and associated types, we retrieve
vulnerability-related tokens in the CVE and git log, by
considering the semantic context of those tokens instead
of the simple approach (string matching) which failed to
consider the grammatical property of the words in sen-
tence. For example, trigger acts as a variable in the func-
tion static void save_ELCR(char* trigger). However, in
CVE description or git log, “trigger” is usually used as a verb
(e.g., “to trigger buffer overflow”). Specifically, DIFFCVSS
uses Part-of-Speech (POS) tagger in spaCy [33] to recog-
nize the grammatical property (e.g., noun, verb, adjective)
of each word. If the token appears in the parse tree and its
POS tag is either NOUN or PROPN or ADJ [33], we regard it as
a vulnerability-related token. Such approach yields an accu-
racy of 96% to recognize vulnerability-related tokens in the
CVE and git log. After that, we correlate such tokens to func-
tions by checking if they appear in a function’s description or
function name or function body.

4.3 Vulnerability Call-Chain Identification

As we discussed in §2.2, to assess exploitability metrics of a
vulnerability, we need to know its vulnerability call-chains
(from entry points to the vulnerable function). Instead of us-
ing the symbolic execution or directed fuzzing, which suffers
from scalability and coverage issues, DIFFCVSS leverages
vulnerability information to automatically identify the vulner-
ability call-chains in the Linux and the Android kernel. As
will be shown in §6.3, such an approach is not only scalable
but also precise.

Some funcs in the selected call-chain | Related keywords
snd_seq_create_port snd
snd_seq_ioctl_create_port ioctl, snd
snd_seq_ioctl ioctl, snd
vfs_ioctl ioctl

do_vfs_ioctl ioctl

SYSC_ioctl ioctl

SyS_ioctl ioctl

Table 3: Mapping CVE keywords to functions in call chains.

Identifying vulnerability call-chains in Linux. To get the

vulnerability call-chains in the Linux kernel, DIFFCVSS
first leverages the vulnerability patches and CVE descrip-
tion to find all the related functions, and applies two rules
to identify a call-chain as the vulnerability call-chain if (1)
it contains a highest number of related functions; and (2)
the functions in the call-chain should also match with the
same severity metrics specified in the CVSS. Taking CVE-
2017-15265 as an example, given its vulnerable function
snd_seq_create_port, DIFFCVSS identifies 514 call chains
from different entry points. However, based on the descrip-
tion in Figure 2, DIFFCVSS will identify several keywords,
such as sound, snd, and ALSA. By using these keywords to
find the related functions (see Table 3) and match with them,
DI1FFCVSS can uniquely identify the vulnerability call-chain.

Matching vulnerability call-chains in Android. Since the
CVSS is evaluated for the Linux kernel instead of Android,
we cannot directly use the CVE description to identify the
corresponding vulnerability call-chain in the Android. To
address this, we propose a method to match the most relevant
vulnerability call-chain in Android based on a fact that most
functions are still the same or similar between the two ker-
nels. We use the following formula to evaluate the similarity
between two call-chains (one in Linux and the other in An-
droid). The idea is quite simple and intuitive—we perform a
similarity analysis against the two call-chains, and the similar-
ity is defined based on two intuitions: (1) similar call-chains
should call many same functions in the same order, and (2)
the shared functions should also be similarly distributed in
the call chains. That is, they also share a similar structure.

Accordingly, we define the similarity formula Sim =
std(index(LCS(CCp,CCy))) * len(LCS(CCr,CCy)), where
CCy, and CCy are the call-chains in Linux and Android, re-
spectively; LCS is the longest common subsequence, which is
commonly used to measure the edit distance between two lists
and used in previous works such as [9], to measure the sim-
ilarity of call-chains; index() is to get the indexes of shared
items in the Linux call chain and LCS; std is the standard
deviation(std) of the indexes list. std is a measure of disper-
sion for the shared functions; a higher std indicates that the
shared functions are spread out over a broader range of the
call chain. Thus, the higher the Sim is, the more similar the
two call-chains are.

Addressing the path-explosion problem. It is unrealistic to
explore all call-chains due to the path-explosion problem. We
observe that 95% of feasible paths collected from the fuzzing
log generated by Syzkaller [65] contain less than 18 func-
tions. Based on this observation, we employ the Dijkstra’s
algorithm [16] (a algorithm for obtaining the shortest paths
between two nodes in a graph) to select paths with less than
18 functions. Our evaluation results in §6.3 show that this
approach only introduces about 4/65 (6%) of false negatives.
However, without such a limit, there will be almost an “in-
finite” number of reachable paths from an entry point to a
vulnerable function—the complexity is O(V!) [59], where V



is the number of vertices in the call graph; we found that the V
is larger than 300K in the recent versions of the Linux kernel,
easily leading to path explosion. Therefore, we believe that
choosing such a limit of 18 functions is necessary.

4.4 Differential Severity Analysis
After identifying and matching the vulnerability call-chains
in Linux and Android, DIFFCVSS analyzes their severity dif-
ferences. DIFFCVSS first uses the function-metric mapper
(§4.1) to determine whether the functions in the Android vul-
nerability call-chain are associated with exploitability metric
values, based on which DIFFCVSS can inference the values
for each exploitability metric. Notice that, for a specific met-
ric, if multiple values are found in the call-chain, DIFFCVSS
will choose the value associated with higher exploit require-
ments. For example, if DIFFCVSS finds two different func-
tions in the Android vulnerability call-chain, one is associated
with AV:N and the other is associated with AV: P, the final value
for exploitability metric AV will be P. This is because the at-
tacker has to access the vulnerable machine physically (AV:P),
which is a higher exploit requirement than remotely accessing
the machine (AV:N). After that, DIFFCVSS employs differ-
ential analysis to compare the exploitability metrics in the
Android and with the original CVSS vectors in the CVE
database. In this way, DIFFCVSS outputs the differential
metric values for the vulnerability in Linux and Android.
For instance, given a cross-OS vulnerability CVE-2016-
2085 with the function inode_permission in the differential
call-chains, DIFFCV'SS will map such a function to the metric
value PR:H. When comparing with the original metric value of
PR:N, we conclude that an attacker requires higher privileges
when exploiting the vulnerable component.

Metrics-severity rating and comparison. Given those dif-
ferential metric values in Linux and Android, DIFFCVSS
quantifies severity changes using the CVSS calculator [1], by
mapping those metric values into real numbers. Note that the
quantification focuses on only the differential metrics, which
is a limited number, so it is easily automatable. Using the
same example of the vulnerability CVE-2016-2085, which
differential metrics are PR: H, and AC: H; after calculating
the severity changes, the results show that this vulnerability
has a lower severity in Android than Linux.

5 Implementation of DIFFCVSS

Word2Vec model training. We train the Word2vec model
using gensim [54]. The size of word vector is 300 (the
commonly-used value); the window size is 5 (maximum
distance between current words and predicted words); and
min_count is set to 1 (consider all the words appear in the
corpus). The training corpora includes 149k function de-
scriptions from the Linux kernel, 145K function descriptions
from the Android kernel, 3k Linux-related CVE descriptions,
and 935K git log messages. We pre-process each text se-
quence by removing white space and stopwords, transforming

hump-expressed or underline-expressed function names into
separate words (e.g., check_ipc_perms -> check ipc perms),
expanding constructions (don’t -> do not), etc.
BiLSTM+Attention model training. We manually anno-
tated 5,594 functions in total for model training. Using the
aforementioned model architecture (§4.1), we train a multi-
classifier for AV and three binary-classifiers for AC, PR, and UI,
respectively. We implement our models using Tensorflow [5].
The embedding size is set to 300 (same as the word2vec). The
hidden size used in BILSTM is 150. The attention layer is ini-
tialized with normal distribution. The dropout rate is 0.2. In
the dense layer, we use the softmax as the activation function.
Also, we use the categorical cross-entropy loss and Adam
optimizer with learning rate 0.0001 in the model training.
OS-kernel compilation. In order to compile the target kernel
given a vulnerability and its CVE description, we first lever-
age the information extracted in §4.2 to determine configura-
tion options and the architecture. For example, if the vulner-
ability can only be exploited when CONFIG_XFRM_MIGRSTE is
disabled in X86 module, we will set CONFIG_XFRM_MIGRSTE=n
in the config file and set ARCH=x86 in make options. If there
is no such information extracted for CVE description or git
message, by default, we will use the allyes configuration in
the aarch64 architecture. Specifically, for the Linux kernel
compilation, we use standard Clang to generate bitcode files.
For Android compilation, we use AOSP Clang which pro-
vides pre-built tool chains in different architectures. However,
the process becomes tedious when some kernel versions do
not support the compilation with Clang (e.g., version before
4.4.165 or 4.9.139). To address this, we back-ported the Clang
patch-set before compiling it.

Building call graph and call chain. To identify call-chains
in different systems, we first build call graphs for each
of them. Specifically, we analyze all the call instructions
based on LLVM and leverage the state-of-the-art type match-
ing [43, 44, 75] to handle indirect calls. Furthermore, based
on the call stack and the call-graph, DIFFCVSS leverages
flow-sensitive analysis to build the call-chain by inserting the
called functions into the call stack.

6 Evaluation
6.1 Experiment Setting

Platform. We use a set of computing resources available
to us, including two servers (96 cores/256GB memory, 12
cores/64GB memory, respectively), and two desktops (8
cores/64GB memor/2 GPUs for each of them). All these
machines are running on Ubuntu 20.04.

Dataset. To evaluate the effectiveness of DIFFCVSS, we
utilized the following datasets.

e Ground-truth dataset for mapping functions to metrics. Our
tool api2Metrics mapped functions to CVSS metrics based
on attention-based classifiers. In order to train the models
and test their performance, we create a ground-truth dataset,



Metrics type Metrics CVE | APIs Example
value

N 22 34 tep_rev_established: TCP receive function for the ESTABLISHED state
Attack Vector A 1 2 wlan_setup: set up any members of the wlan device structure that are common to all devices

P 24 116 device_release_driver: Manually detach device from driver. When called for a USB interface
Attack Complexity H 27 32 drm_atomic_check_only: check whether a given config would work
Privileges Required H 5 6 tomoyo_check_unix_acl: Check permission for unix domain socket operation
User Interaction R 22 42 tiocgsid: @tty: tty passed by user, @real_tty: tty side of the tty passed by the user if a pty else the tty

Table 4: The groundtruth set of mapping functions to metrics.

which has been released at [3]. The labeling process is as
follows. We first collect vulnerabilities that contain fuzzing
logs and extract their corresponding CVSS metrics assigned
by NVD. As shown in Table 4, we found 22 vulnerabilities
with UI:R; 22 vulnerabilities with AV:N; 24 vulnerabilities
with AV:P; 1 vulnerability with AV:A; 27 vulnerabilities with
AC:H; 5 vulnerabilities with PR:H. Then, two annotators with
security background manually check functions in the fuzzing
logs, map them into related metrics. In total, we collected 152
functions in AV metric, 32 functions in AC metric, 6 functions
in PR metric, and 42 functions in UI. Such data serve as a
good guidance for us to label more data. Two annotators
further labeled 1,557 functions for AV metric, 1,529 functions
for AC metric, 1,371 functions for PR, and 1,137 functions for
UI. Finally, we integrate all labeled functions. On average,
we have an agreement rate as 95%. For those uncertain cases,
we contact NVD maintainers for answers. For example, the
function btrfs_read_fs_root (a file operation) appears in
the fuzzing log of CVE-2019-19036. We are not sure whether
it should be associated with UI metric. The response from
NVD shows that when a CVE requires a file to be executed
in order to exploit, the UI should be R. Hence, we label such
file operations as UI related.

o Ground-truth dataset for mapping functions to metrics in
different versions of Android. As our metric mapping tool is
trained on the labeled functions from Linux mainline, we need
to transform it into Android. We build a ground-truth data
set from three stable Android versions which are Android-
3.18-o-release, Android-4.19-g-release, Android-12-5.4. As
demonstrated by prior work [57], the Android kernel intro-
duces a number of new kernel subsystems and new mecha-
nisms. Take Android-4.14 as an instance, the largest features
changed from mainline include 13.8% in Networking (net/net-
filter), 13.5% in Sdcardfs (fs/sdcardfs), 9.4% in USB (driver-
s/usb), and so on. In order to better migrate the difference,
we label data from such android-enhanced functions. More
specifically, we first identify those Android-specific functions
which only appear in Android kernel. In total, we get 22,169
Android-specific functions in Android-3.18-o-release, 8,695
in Android-4.14, and 4,079 in Android-12-5.4. Further, we
label 150 functions for each metric of each version as our
ground-truth.

o Ground-truth dataset for vulnerability call-chains. To eval-
uate the vulnerability call-chain identification of DIFFCVSS,
we collect 65 vulnerabilities in CVE database, which have

recorded the fuzzing logs, including the call-chains from entry
functions to vulnerable functions. We use these vulnerabili-
ties and the associated call-chains as the ground-truth set in
this evaluation.

6.2 Evaluating Metric-to-Function Mappings
In a nutshell, we achieve a high accuracy in mapping metrics
to functions: a precision of 93.0% and a recall of 91% on
average. In this study, we perform a Train-Test Split of our
labeled data. Specifically, we randomly sample 70% of data
to train the model, 10% of data to tune the hyperparameters,
and the rest 20% to evaluate the model performance. Table 5
details the experiment results.

6.2.1 Precision and Recall of Classifiers

Attack Vector (AV) classifier. To train this multi-class classi-
fication model, we manually label 1,557 functions. Based on
the rules provided by CVSS [35], 190 functions are bounded
to network stack and allow remotely access (N); 124 func-
tions are also bounded to network stack but limit network
attacks to adjacent access (A); 203 functions require attackers’
physically access (P); the remaining 1,101 functions are not
related to AV metrics. The results are shown in Table 5. When
looking into the false positives cases of N and false negatives
of A, we found that the classifier falsely classified some ad-
jacent network functions into N. This is due to they share
the similar semantic contexts, as the metric values N and A
are both bound to network stack; the difference is that metric
value A can only be locally accessed (e.g., Bluetooth or IEEE
802.11) while N can be remotely (e.g., across one or more
routers). In our study, our attention mechanism is able to
capture some informative keywords which indicate the same
shared physical network or local network (e.g., “WLAN”,
“wireless”, “Bluetooth”, “wifi”, “ieee80211”" ) to distinguish A
from N.

Attack Complexity (AC) classifier. We train a binary clas-
sifier to discover functions that reflect complex conditions
that attacker must control to exploit the vulnerability. For this
purpose, we manually label 1,529 functions, among which
411 functions reflect high attack complexity (H). As shown
in Table 5, on the test data, we achieved 92.38% precision
and 91.51% recall in classifying high attack complexity func-
tions. When analyzing the false positives of the model, we
found that the falsely labeled functions turn out to indeed
contain sentiment terms and reflect high requirements for
exploitability, whose semantic context is more focused on



the requirement of access privileges that are supposed to be
classified as PR metric. For example, the sentence “check
for access right to given inode.” are falsely labeled, since it
includes the sentiment word “check” and describe the need
for extra capability. However, the corresponding function
inode_permission is intended to check the read and write
permission on an inode which should be classified into a sep-
arate PR metric according to the latest CVSS 3.1 guideline.
On the other side, false negatives are mainly caused by the
sentiment analysis, which failed to put more attention to some
sentiment terms like “futex” which implement basic locking
and indicate the timing conditions, due to the incompleteness
of training set.

Privilege Required (PR) classifier. We train a binary clas-
sifier to discover functions that reflect certain permission is
required to perform attack. To this end, we manually label
1,371 functions, among which 236 functions perform per-
mission checks. On the test dataset, our model achieves a
recall of 94.52% and a precision of 93.24%. When look-
ing into false positives, we found that those falsely labeled
functions indicate some other conditions the attacker needs
to control, which however actually belong to the AC metric.
For example, the function qla4_82xx_pci_mem_bound_check
has the description “check memory access boundary used
by test agent support ddr access only for now”, which how-
ever indicates more conditions the attacker should control
during exploitation and hence is supposed to be classified
as AC. Interestingly, such blurs between AC and PR metric is
explainable by historical CVSS version (2.0), in which AC and
PR both belong to the same metric Access Complexity[22].
When looking to the false negatives, we found many of them
are caused by less formal, imprecise, vague descriptions [61].

User Interaction (UI) classifier. We train a binary classi-
fier to recognize functions that reflect user operations. For
this purpose, we manually label 1,137 functions. On the test
dataset, our model achieves a precision of 92.96% and a re-
call of 91.67%. When looking into the false positives, we
found that the falsely labeled functions are caused by high
attention to some specific terms. For example, the function
account_user_time has description “account user cpu time
to process the process that the cpu time get accounted to
cputime the cpu time spent in user space since the last up-
date”, which is falsely labeled as the excessive attention to
the informative term “user”.

6.2.2 Model Transferability

In order to evaluate the model’s transferability on Android
kernel, we ran the four classifiers over the ground-truth dataset
which contains labeled functions from three stable Android
kernel versions. As shown in Table 5, the performance on
Android is in parallel with that of Linux, which confirms the
stability and generality of our models. For example, when
classifying the functions to PR: H, the model achieves a recall
around 93% in both Android and Linux kernels.

6.2.3 Effectiveness on Different Versions

This section further evaluates the models of DIFFCVSS
against more versions of the Linux and Android kernels. The
evaluation is to confirm that DIFFCVSS is generic and has
stable performance across different versions. Specifically, we
evaluate the performance of DIFFCVSS on Linux-4.4, Linux-
4.9, Linux-4.14, Android-4.4-o, Android-4.9.p, Android-4.14-
q. We randomly sample and annotate 200 distinct functions
for each metric under each Linux and Android version. Fur-
ther, we run Linux and Android kernel models, respectively,
and the results are detailed in Table 6. As we can see, the
precision and recall of each metric over different versions
are numerically stable. For example, the precision of the PR
metric across three Android kernel versions is 91.39% on
average with the standard deviation of 1.74. Moreover, when
we inspect the internal function difference in three Linux ver-
sions and three Android versions, we found that the function
difference is negligible, and most of the functions would not
be changed between different versions. Specifically, for two
adjacent versions listed above, such as v4.4 and v4.9, on aver-
age, the newer version will add 9.8% of functions and delete
about 3.9% of functions in the old version. Such observa-
tion explains why our Linux model has a stable performance
across different versions, the same as the Android model.

6.2.4 Comparison with the State of the Art

Pex [75] is a recent tool that identifies a set of functions that
perform permission checks. More specifically, Pex manually
constructed a small set of known permission-check functions,
and then used dominator analysis [49] to find their wrappers.
In total, PeX finds 284 functions that perform permission
checks. DIFFCVSS is able to map all of them to the metric
value of PR:H. Moreover, DIFFCVSS discovers additional
1,034 permission-check functions through the Privilege Re-
quired classifier.

6.3 Evaluating Call-Chain Identification

The scale of possible call-chains. Given a vulnerability,
DIFFCVSS first collects all possible call-chains and then
identifies the one related to the vulnerability. If there are too
many possible call-chains, the identification may not scale.
The evaluation shows that, on average, DIFFCVSS collects
352 possible call-chains. With the call-chain identification
mechanism, DIFFCVSS is able to precisely identify 7.7 vul-
nerability call-chains on average (with the median of 2). This
result shows that DIFFCVSS can effectively mark 98% of
call-chains as irrelevant.

Effectiveness of vulnerability call-chain identification.
As discussed in §6.1, we selected 65 vulnerabilities with
fuzzing log as the ground-truth set to evaluate the preci-
sion of our approach. Our evaluation result shows that 54
(83%) of these vulnerability call-chains can be identified by
DIFFCVSS, and 11 of them are missed due to the following
reasons. First, the inaccuracy of call-graph construction. In



Linux Mainline Android-3.18-o-release | Android-4.19-q-release Android-12-5.4

Metrics Label Recall Precision Recall Precision Recall Precision Recall Precision

N 92.42% 93.84% 94.44% 87.2% 89.74% 92.11% 94.45% 91.23%
Attack Vector A 87.50% 93.33% 86.04% 92.5% 93.33% 90.32% 91.11% 93.18%

P 88.52% 91.53% 89.66% 92.85% 91.43% 94.12% 87.88% 93.55%
Attack Complexity H 91.51% 92.38% 93.88% 86.79% 93.44% 89.1% 93.1% 91.53%
Privileges Required H 94.52% 93.24% 93.94% 91.8% 92.59% 89.28% 91.67% 91.67%
User Interaction R 91.67% 92.96% 93.65% 90.77% 92.96% 90.04% 92.5% 92.72%

Table 5: The precision and recall of each classifier in metric-function mappings, as well their transferability.

Linux-4-4 Linux-4-9 Linux-4-14 Android-4.4-0 Android-4.9-p Android-4.14-q
M Label R P R P R P R P R P R P
N 94.59% 89.74% | 90.14% | 91.42% | 92.85% | 91.54% 92% 89.61% 88.24% | 91.83% | 91.17% | 87.32%
AV A 89.47% | 91.07% | 90.14% | 91.42% | 92.85% | 91.54% 90% 93.10% | 92.15% | 90.38% | 92.92% | 92.10%
P 92.45% 89.09% 89.65% | 92.85% | 90.91% | 89.28% | 88.23% | 93.75% | 90.56% 85.71% 87.80% 90%
AC H 90.74% | 92.45% 89.19% | 91.66% | 90.52% | 92.47% | 90.74% | 89.91% | 92.92% | 92.11% 92% 90.19%
PR H 90.14% | 92.75% | 92.55% | 93.54% | 93.54% | 89.23% | 89.83% | 93.81% | 94.04% 89.77% | 93.90% | 90.58%
Ul R 91.01% | 94.18% | 92.41% | 90.12% | 91.57% | 92.68% | 89.87% | 91.03% | 92.71% | 90.81% | 9091% | 93.33%
Table 6: The precision and recall of each classifier on multiple Linux and Android versions. M = Metrics.
the Linux kernel, some entry functions are written in assem- ent versions of Linux.
bly code, which cannot be correctly compiled and analyzed by # yulnerabilities
LLVM. Therefore, the callee of these entry functions may be AV]AC [ PR | Ul
missed. This leads to 7 missed cases. Also, as we discussed More severe in Android 13 |11 135 | 2
. L. More severe in Linux 63 57 36 75
in §4.3, DIFFCVSS enforces a limit of 18 for the number of
§4.3. C S 8 Similar severe in Linux and Android 51 59 56 50

functions in a call-chain to avoid path explosion. This leads to
the remaining 4 missed cases. Accordingly, these issues can
be alleviated in the future by improving the program-analysis
techniques such as indirect-call analysis and assembly anal-
ysis. However, improving such techniques is challenging,
which requires new designs and lots of engineering works,
and thus they are regarded as the future works for DIFFCVSS.

Precision of the Android and Linux call-chain matching.
As we discussed in §4.3, by comparing the CVE-related call-
chain in Linux, DIFFCVSS matches the most similar call-
chain in Android and further analyzes the metrics of this
call-chain. Here we evaluate the precision of the matching.
We manually compare the Linux vulnerability call-chain with
Android call-chains identified by DIFFCVSS to see if they
contain the same set of functions in the same execution or-
der. It took 2 security professionals 2 person-hours for data
annotation.

After checking all the 127 call-chain pairs, we found that
113 of them are matched exactly, but 14 are not exactly the
same. We further analyzed these 14 cases and found that all
of them are not caused by the similarity analysis, but instead
caused by missing the same functions in Android. This means
that these 14 cases may not be false-positive cases, but are
already the most similar call chains we can find. Therefore,
given a CVE-related call-chain in Linux, we believe that the
similarity analysis is precise in capturing the similar Android
call-chain based on this result.

6.4 [Evaluating Cross-OS Severity Differences

In this section, we evaluate the severity differences of cross-
OS vulnerabilities in Linux and Android, as well as in differ-

Table 7: Cross-OS vulnerability exploitability metric difference
between Linux and Android.

6.4.1 Severity Differences Between Linux and Android

To conduct this experiment, we select cross-OS vulnerabili-
ties from the Linux kernel with the following rules: (1) the
vulnerabilities should be found in recent years because as
cross-OS vulnerabilities, they should affect at least one of
the versions in Android (v3.18, v4.4, v4.9, v4.14, v4.19, and
v5.4); (2) the patch of the vulnerability is available; (3) the
vulnerable file can be successfully compiled to LLVM IR.
Finally, 127 vulnerabilities are selected and analyzed in this
experiment.

As discussed in §4.4, based on the differential severity
analysis, DIFFCVSS outputs differential CVSS metric val-
ues of cross-OS vulnerabilities in Linux and Android. The
results are summarized in Table 7. For example, the first
row in the table indicates the number of CVEs that the cor-
responding metrics have higher severity than they are in the
Linux (e.g., a vulnerability has AV:N in Android but AV:P in
Linux). Furthermore, our study also measures the difference
of the vulnerability’s severity groups (low, medium, high, crit-
ical), defined by CVSS [50]. This result shows that among
127 vulnerabilities, beyond 17 (13%) vulnerabilities with the
same severity in Android and Linux, the severity of most of
the cross-OS vulnerabilities (87%) is different in different
OSes. Specifically, 92 (72%) of the vulnerabilities are more
severe in Linux than Android, which means that prioritizing
the patch for Android may waste maintenance resources that
are supposed to be allocated for critical vulnerabilities. Also,
18 (15%) vulnerabilities are more severe in Android, which



means that these vulnerabilities may not be patched timely in
Android if the severity evaluation is based on the CVSS score
for Linux. This can be particularly critical as adversaries will
have a larger time window to exploit the “already-publicized”
critical vulnerabilities in Android devices.

The precision. To check the precision, we manually look
into all these cases reported by DIFFCVSS and see if (1)
the identified exploitable call chain is indeed related to the
CVE description, (2) the identified exploitability metrics from
functions are correct, and (3) the severity differences are
correctly calculated and compared. If a case meets all of these
requirements, we regard it as correct. The manual analysis
shows that among these 127 cases, 116 of them are correct,
which means that DIFFCVSS achieves a high precision of
(91.3%) in the differential severity analysis. Looking into
these incorrect cases, 4 are caused by missing enough useful
vulnerability artifacts to select the vulnerability call-chains.
Therefore, DIFFCVSS mis-selected the vulnerability call-
chains. Also, 7 are caused by the incorrect mapping from
exploitability metrics to functions. This result is aligned with
the result from the user study (see §7), and we will further
discuss the potential improvements for precision in §8.

Case Study: a more severe vulnerability in Android.
CVE-2019-3701 is a local out-of-bound write vulnerability.
Its exploitability metrics assigned by NVD in the affected
Linux kernel v4.19 are AV:L/AC:L/PR:H/UI:N. Running on
this vulnerability, DIFFCVSS outputs a differential metric
value of AV:N in affected Android kernel v4.19. It indicates
that an attacker can even exploit this vulnerability remotely
in Android (AV:N)—a much more severe case—while in the
Linux kernel, an attacker has to access the target system
locally (AV:L). When looking into the difference of vulner-
ability call-chains in Linux and Android, we found that the
function tcp_v6_do_rcv exists in Android vulnerability call-
chain while not in Linux. The function tcp_v6_do_rcv is
the network protocol-level related function, which indicates
the vulnerable component is bound to the network stack in
Android.

6.4.2 Severity Differences Between Linux Versions

In this evaluation, we further test the vulnerabilities-severity
differences among different versions of the Linux kernel.
Since there are thousands of versions of Linux Kkernels, test-
ing all of them is unrealistic. Therefore, in this evaluation,
we only test the vulnerabilities-severity differences in several
commonly-used versions and long time support versions, in-
cluding v3.8, v3.18, v4.4, v4.9, v4.19, v5.1, and v5.4. Then,
from all the 127 vulnerabilities we have tested, we select the
vulnerabilities that would affect at least two of the versions
we just mentioned. Finally, 92 vulnerabilities are selected
and analyzed. Among them, 62 vulnerabilities have the same
severity across different versions of the Linux kernel, and 30
show different severity in different versions. These results
indicate that even for the same system, vulnerabilities can

cause different severity for different versions. Therefore, the
patching priority should also be evaluated per version when
needed.

7 Usability Study
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Figure 4: The Procedure of the user study.

We further conduct a user study to evaluate the usability
of DIFFCVSS from the user perspective (e.g., downstream
maintainers). The usability of DIFFCVSS focuses on effec-
tiveness, accuracy, and satisfaction. In particular, we seek
to answer the following key questions: Q1: How efficient
is DIFFCVSS in reducing maintainer workload? Q2: How
accurate is DIFFCVSS in re-evaluating vulnerability? Q3:
How usable is DIFFCVSS in practice?

Recruitment. After an IRB approval, we recruited partici-
pants by distributing recruitment advertisements online (see
the detail requirements for recruitment in Appendix 12.1.1),
contacting related organizations (mostly CVE Numbering
Authorities (CNAs) worldwide) that maintain downstream
Linux derivatives, and snowball sampling, where participants
recommended other colleagues. In total, we recruited 30
participants, including ten maintainers in industry who have
real-world experience in vulnerability evaluation and 20 grad-
uate students who have a background in system security. We
follow a standard and ethical way [45, 55, 70] to reward par-
ticipants ($30 Amazon gift card for each student and $100
for each employee) in the user study. Table 8 details the
demographics of participants. We believe the number of par-
ticipants is substantial, as it is already more than 12-20 partic-
ipants as suggested by qualitative research best practices liter-
ature [31] and also aligns with related works [25, 60, 67, 68].
Procedure of the user study. In this study, we selected in
total 20 vulnerabilities analyzed by DIFFCVSS, which can
cover different exploitability metrics and different severity
levels, and every participant is required to analyze 4 of these
vulnerabilities. Due to the various expert levels of maintain-
ers and students, the procedures slightly differ, which are
shown in Figure 4. Specifically, maintainers were asked to re-
evaluate two vulnerabilities manually and the other two with



S (n = 30)

Organization Ul 40%
U2 35%
U3 20%
U4 5%
Cl 40%
c2 20%
C3 20%
C4 10%
C5 5%
C6 5%
years 1-3 years (Security analyzer)  30%
and role 3-5 years (Security analyzer)  50%
6+ years (Security Manager)  20%
Education Bachelor’s degree 10%
Master’s degree 20%
Ph.D’s degree or higher 70%

Table 8: PARTICIPANTS DEMOGRAPHICS: U1-U4 represents 4
universities,C1-C6 represents 6 companies, S represents Survey.

the help of our tool, DIFFCVSS. To ensure students are capa-
ble for vulnerability assessment, we asked them to study the
training materials before re-evaluating the four vulnerabilities
with the help of DIFFCVSS. Our training materials include
wiki-based background introduction, real-world examples of
vulnerability-severity re-evaluation, and a case study based
on DIFFCVSS. Note that here the information provided by
DI1FrCVSS for the participants includes: (1) the most likely
vulnerability path (the code path triggering the vulnerability);
(2) the most similar vulnerability path in the Android kernel;
(3) the Android functions and associated CVSS metric values.

After that, all the participants were asked to complete a
questionnaire for measuring the usability of DIFFCVSS in-
cluding effectiveness, precision, and satisfaction. Finally, we
check their responses and perform an interview to understand
their feedback of DIFFCVSS in detail. We provide all the
training materials and survey questions in [3].

M S A
Lo > 4h N/A 4.8h
Manual re-evaluation time (M=8)
Evaluation time with help of tool 21.7m 23.8m 23.1m

Reduced workload with help of tool 75.1% 78.3% 76.7%
Metric-level Accuracy 88.75% | 90.31% | 89.53%
Severity-level Accuracy 90% 91.2% 90.6%

Table 9: User study evaluation results. M=maintainer, S=student,
A=average

Results. This study lasted over four months, including survey
design, recruitment, and data collection and analysis. We
elaborate on the answers to the above questions as follows:
e DIFFCVSS can save 91.98 % of time and reduce
76.7% of workload. We demonstrate the effectiveness of
DIFFCVSS by comparing the re-evaluation time with and
without DIFFCVSS. Specifically, 90% of maintainers (M=9)
were unable to manually re-evaluate the two vulnerabilities
due to the time limit (120 minutes). When we asked how
much time they would expect to finish the re-evaluation, 8

maintainers answered “at least 4 hours”, and two of them
answered “more than 6 hours”. The average expected evalua-
tion time is 4.8h. In comparison, with the help of DIFFCVSS,
most participants (M=10, S=18) successfully finished this
task within 30 minutes. The average time is 23.1 min. The
results show that DIFFCVSS dramatically eases the vulnera-
bility assessment for maintainers. The results are summarized
in table 9.

Moreover, we present the responses of participants on how
much and what kind of workload can be reduced with the
help of DIFFCVSS. The average reduction of workload is
76.7% (M=75.1%, S=78.3%). Specifically, 34.2% of par-
ticipants (M=36.36%, S=32.05%) state that “less time to
find vulnerability-related call-chain”; 28.53% of participants
M=27.27%, S=29.79%) describe that “less time to under-
stand the functionality of source code”; 17.43% of partici-
pants (M=18.18%, S=16.67%) expressed that “less time to
understand the exploitability of the vulnerability”. The results
show that DIFFCVSS can significantly reduce the time and
efforts for vulnerability re-evaluation.

o DIFFCVSS achieves an accuracy of 89.53% in Metric-
level and 90.6% in Severity-level on average. In order to
test how precisely DIFFCVSS can re-evaluate vulnerabili-
ties from user perspectives, we present each step’s results of
DIFFCVSS to the participants. With the help of DIFFCVSS,
the participants are asked to re-evaluate the severity of the
vulnerability in Android kernel. After that, we compare their
re-evaluation results with that of DIFFCVSS in Metric-level
and Severity-level. Metric-level means we evaluate the fine-
grained precision in terms of four exploitability metrics (AV,
AC, PR, UI). Severity-level means we measure the precision
in terms of a vulnerability’s severity group (low, medium,
high, critical) defined by CVSS [50]. Note that sometimes
one metric difference will not change the severity level. The
results show that DIFFCVSS achieves a 89.53% of accu-
racy (M=88.75%, S=90.31%) in metric-level and correctly
re-evaluates 90.6% (M=90%, S=91.2%) of vulnerabilities,
which align with the evaluation results in §6.

e The vast majority of participants expressed satisfaction
with the usability of DIFFCVSS. We seek to understand
how DIFFCVSS satisfies the maintainers and potential users.
The satisfaction metric is measured by the following key
points: whether DIFFCVSS can provide correct guidance
and whether they are willing to utilize them for vulnerabil-
ity assessment. 90% of participants (M=8, S=19) thought
DIFFCVSS could correctly guide them to re-evaluate vulner-
abilities. One maintainer chose the option might or might
not. He commented that “Though DIFFCVSS can help me to
analyze the vulnerability, the proof-of-concept (PoC) is neces-
sary if I want to re-evaluate a vulnerability very precisely”.
It is indisputable that PoC can contribute significant help for
the security analyzer. However, only 9.7% of linux kernel
related-vulnerabilities have PoC. Although DIFFCVSS can-
not provide the exact PoC, the 83% vulnerable call stacks it



generated are the same as that of PoC (see §6.3). One par-
ticipant posted a negative attitude and commented that “Not
sure whether the call-chain generated on Android kernel is
correct”. We re-checked the vulnerabilities he re-evaluated
with the help of DIFFCVSS and found the call-chain gener-
ated on Android indeed has a significant discrepancy with
Linux, which only shares 22.53% of functions. To find the
most possible vulnerable call-chain in the Android kernel,
DI1FFCVSS matched the most similar one of the Linux ker-
nel, which we acknowledge that it may cause a certain error.
It is possible that such a vulnerability does even not exist in
the Android kernel when the similarity score is very low. The
security analyzer may need extra efforts to determine in such
a situation. As to the question whether they are willing to use
them in the future, 90% of participants (M=8, S=19) chose
Yes, 6.67% (M=1, S=1) chose Not sure, and 3.33% (M=1)
chose No.

Analysis of False Cases of DIFFCVSS in User Study. Fur-
ther, we inspect why DIFFCVSS failed to re-evaluate some
vulnerabilities correctly. First, 38.5% of the cases are caused
by uncertainty of the call-chain generation. The participants
expressed doubts about the reach-ability of the call chain.
One describes that “though DIFFCVSS generates the most
possible exploitable call-chain, but it didn’t provide enough
evidence to show it is reachable which increases my uncer-
tainty to the results of DIFFCVSS”. Second, 34.6% of cases
are caused by the false positives and false negatives in func-
tion mapping. For example, the function path_get, which
gets a reference to a path, is incorrectly mapped to the Ul
metrics. One participant said that “when a window pops up
in android apps, it may invoke the path_get, but it did not in-
volve any user interaction”. On the other hand, The function
usb_submit_urb is a miss-reported case, which indicates it
requires victims to plug a malicious USB into their computers
(UD), but the UI model failed to recognize it. The others are
unsatisfied with the presentation of DIFFCVSS. One par-
ticipant commented that “The plain and long call-chain of
Android and Linux are presented on different pages, which is
hard for me to compare the difference”. We acknowledged
that the presentation of DIFFCVSS results is not very user-
friendly, which may impact its usability. It would be nice to
visualize the call-chain and highlight the difference; however,
doing so will take much laborious engineering efforts, which
is not our focus in the current research stage.

8 Discussion and Future Work

Improving the accuracy of DIFFCVSS. There are two ma-
jor possible causes of false results: incorrect mapping from
exploitability metrics to functions and incorrect vulnerabil-
ity call-chain identification. The first issue is mainly caused
by missing enough keywords and descriptions to determine
the relationship between a function and vulnerability met-
rics. This issue can be alleviated in the future by collecting
function descriptions from other sources, such as git logs

that mention the functionality or design of different functions.
Such information can be used to improve the precision of
the model further. Also, the metric value of some functions
cannot be determined only by its description, but also its pa-
rameter. For example, the function capable(int cap) can
decide if the current task has some capability in effect. Some
arguments, such as cap = CAP_SYS_ADMIN, indicate an admin
capability and thus indicates PR:H, but other arguments like
cap = CAP_IPC_OWNER may only show a general capability
and thus indicate PR:L. Therefore, future work can equip
data-flow analysis or code context analysis to improve the
precision of mapping functions to exploitability metrics. The
second issue is often caused by the incorrect identification
of indirect calls and the incomplete coverage of entry point
functions written in assembly code. Correspondingly, this is-
sue can also be alleviated by improving the program-analysis
techniques such as indirect-call analysis and assembly analy-
sis. Equipping the end-to-end symbolic execution to verify
the feasibility of call-chain can also improve the precision of
vulnerability call-chain identification.

Limitation and generality. DIFFCVSS still has some lim-
itations. Most importantly, the component of mapping ex-
ploitability metrics requires well-maintained documentation
that provides direct, clear, and descriptive function descrip-
tions. Fortunately, most large open-source projects, such
as the Linux kernel, which have many derivatives, are typi-
cally well maintained and thus provide enough documentation
like function description. However, DIFFCVSS would not
work well for the projects with vague, incomplete, and in-
adequate documentation, which might mislead DIFFCVSS
and result in a wrong metrics mapping. Therefore, it will be
exciting to see future work that could automatically gener-
ate the vulnerability metrics without the function description
but only based on functions’ semantics and their usage con-
text. However, developing such techniques is challenging
and also out of the scope of this work. Furthermore, the
component of vulnerable call-chain identification is based on
the program call-graph, which is built by LLVM and Clang.
Thus, DIFFCVSS cannot analyze the project, for which the
complete call graph is unavailable, and it does not support
Clang. However, in general, DIFFCVSS can be applied to
other open-source applications if their documentation is well
maintained, and their call graph can be generated.

9 Related Work

CVSS score/severity/exploitability prediction. Khazaei et
al. [39] and Elbaz et al. [18] proposed a machine learning-
based method to predict CVSS scores based on natural lan-
guage description of vulnerabilities. Han et al. [32] trained
a robust deep-learning model that can extract discriminative
features of vulnerability descriptions to predict multi-class
severity level of software vulnerability. Many previous works
[11, 12, 17] also tried to predict how soon individual vulnera-
bilities are likely to be exploited using features derived from



vulnerability databases or social media posts. However, those
approaches cannot address the “one-for-all” CVSS usage is-
sue, because there exists no vulnerability report for different
versions or derivatives (but only the mainline) to conduct
those description-only analysis. Additionally, there are some
program analysis-based methods that infer the exploitability
of vulnerability. However, those works are less scalable and
applicable due to the requirement of PoCs/exploits or using
less-generic self-defined metrics.

Vulnerability severity rating. Numerous works also try to
rate the vulnerabilities to help patch prioritization and eval-
uate the severity of vulnerabilities. CVSS [46] generally
discussed the Common Vulnerability Scoring System. Liu
et al. [42] compared existing vulnerability severity scoring
systems X-Force, CVSS and VRSS, based on which they
also provide their own vulnerability scoring system. Han et
al. [32] provide a system based on word embeddings and a
CNN, which can capture special word and sentence features
from vulnerability descriptions and further use them to pre-
dict vulnerability severity. Similarly, Spanos et al. [58] also
provide a vulnerability severity scoring system based on text
mining against the description of vulnerabilities. However,
most of these existing works are only based on textual infor-
mation of vulnerabilities, which are typically limited to the
specific version and vendor of a project. Thus, these works
cannot address cross-environment vulnerabilities effectively.

Patch prioritization. A widely regarded principle is that
security-critical bugs should be prioritized for patching. Many
previous works [10, 30, 78] thus try to identify security-
critical bugs from general bugs through machine learning
techniques. Arora et al. [8] provide an empirical study on
vulnerabilities disclosure, which shows that vulnerability dis-
closure can accelerate patch release, and vendors are more
responsive to more severe vulnerabilities. VULCON [20]
is a vulnerability management strategy, which can prioritize
vulnerabilities for patching based on the input that includes a
series of vulnerability reports, asset criticality, and personnel
resources. Sharma et al. [56] leverage word embedding and
convolution neural network (CNN) to prioritize vulnerability
by analyzing the vulnerability description. However, these
works are only based on the description information from the
CVE or patches, which may not be precise enough when the
description only includes limited information. Furthermore,
none of these existing works can analyze the severity of cross-
OS vulnerabilities. Unlike these works, DIFFCVSS not only
analyzes the description information but also the exploitation
information collected from call chains using program analy-
sis techniques, and thus is more precise and can address the
cross-OS situation.

Vulnerability in cloned projects. Due to the code
clone/reuse, many vulnerabilities propagate to multiple
projects. Some previous works try to identify these vul-
nerabilities. VulSeeker [26] and Gemini [73] are based on

machine-learning techniques, which can analyze the similar-
ity of code and check the existence of cross-platform vulnera-
bilities in binary code. XMATCH [21] detects cross-platform
vulnerabilities in embedded systems and [oT devices based on
extracting and comparing conditional formulas as semantic
features from the binary code. Some previous works also
conduct empirical studies about the severity and influence
of vulnerabilities that propagate to different projects. AD-
DICTED [77] reveals the security risk brought by software
shipment and customization, as vendors and carriers enrich
the system’s functionalities without fully understanding the
security implications. Farhang et al. [19] empirically studied
the security bulletin from Android and three leading ven-
dors: Samsung, LG, and Huawei. Their results show that
vendors would evaluate vulnerabilities and react with CVEs
with Android Git repository references without delay. But
all of these vendors are using different structures for vulner-
ability reporting. Frithwirth [23] presents that people in the
industry have known that the severity of vulnerabilities varies
significantly among different organizational contexts, and this
information can improve the quality of the CVSS-based vul-
nerability prioritization. However, different from DIFFCVSS,
after pointing out or discovered the issues caused by vulner-
abilities that influence multiple projects, none of them can
automatically tell the severity differences of these vulnerabili-
ties. But all of these vendors are using different structures for
vulnerability reporting. Frithwirth [23] presents that people
in the industry have known that the severity of vulnerabilities
varies significantly among different organizational contexts,
and this information can improve the quality of the CVSS-
based vulnerability prioritization. However, different from
DIFFCVSS, after pointing out or discovered the issues caused
by vulnerabilities that influence multiple projects, none of
them can automatically tell the severity differences of these
vulnerabilities.

10 Conclusion

CVSS is used in an “one for all” strategy that assigns a single
severity score, regardless of the derivatives or versions. This
problem results in both severity overestimation which wastes
maintenance resources and severity underestimation which
delays the patching of critical vulnerabilities and incurs criti-
cal threats. To address it, this paper presents DIFFCVSS, a
system that can automatically and precisely determine if a
vulnerability will have a higher or lower severity in a different
OS. DIFFCVSS incorporates multiple new techniques, such
as automatically identifying the call-chain for a vulnerability
and mapping kernel functions to CVSS metrics, to ensure
precision and effectiveness. We evaluated DIFFCVSS on
the Linux and Android kernels. DIFFCVSS reveals that 110
(86.7%) of vulnerabilities show a different severity across
OSes, and thus should be reevaluated per OS. In 18 cases, the
severity is higher in the derivative Android system; failure
to re-assess them will delay the patching process, incurring



critical threats. Our user study also showed that DIFFCVSS
can correctly and effectively guide OS-aware re-evaluation.
The results confirm that DIFFCVSS is precise and effective
in capturing severity differences across OSes.
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12 Appendix

12.1 User study materials

12.1.1 Recruitment Requirement for Students

Students met the following requirement are selected to participate the user
study.

¢ Must have take at least one security-related class

* Must have some basic knowledge of system security
* Must read/write vulnerability report before

¢ Must be familiar with Linux Kernel

12.1.2 Contact Information Survey
The contact information survey is used to record demographics information

and contact method, provide the online consent form. The details can be
found at [3].

12.1.3 Online Consent Form

‘We provide online consent form for participants to read before agreeing to
be in the study. It includes the purpose, the procedure of this study, and the
risks and benefits of taking part in this study. The details can be found at [3]

12.1.4 Train Evaluation Form

Train Evaluation Form, which can evaluate the student’s professional knowl-
edge of vulnerability assessment, is used to guarantee the student participants
can deliver qualified responses. The details can be found at [3].

12.1.5 Post Survey

1. How necessary do you think the derivatives of Linux kernel need to
re-evaluate the vulnerabilities?
(a) Extremely necessary
(b) Very necessary
(c) Moderately necessary
(d) Slightly necessary
(e) Not necessary at all

2. Do you think DIFFCVSS can correctly guide you when re-evaluate
the vulnerability?
O Yes
O No
O Not Sure

3. How effectively do you think DIFFCVSS tool can help you re-evaluate
vulnerability?
(a) Extremely effective
(b) Very effective
(c) Moderately effective
(d) Slightly effective
(e) Not effective at all
4. What kinds of manual work can be reduced with DIFFCVSS?
[ Less time to find vulnerability-related call-chain
[0 Less time to understand the functionality of code
[J Less time to analyze the CVSS metrics
[0 Less time to understand the exploitability of the vulnerability
O Other

5. How much do you think DIFFCVSS can reduce your workload?
(scale question from reducing 0% - 100% workload)

6. What kinds of manual work still required with DIFFCVSS?
O Look into the patch of the vulnerability
[ Look into the CVE description
[ Checking the reachability of the call-chain
O other
7. How precise do you think about DIFFCVSS?
(a) Extremely precise
(b) Very precise
(c) Moderately precise
(d) Slightly precise
(e) Not precise at all
8. Will you consider using the tool in the future when you need to evaluate
a new vulnerability?
O Yes
ONo
O Might or might not

9. Do you think our methodology can be generalized to other program-
s/other applications?
O Yes
ONo
[J Might or might not

10. If any, please describe the shortcoming of DIFFCVSS and anything
that can be improved for DIFFCVSS (open-question).



